Skip to contents

This is an alternative to plot_boxplot() using base R. This function should work with most matrix or matrix-like objects (which is especially useful for DelayedArray objects). The function also includes an option for computing the relative-log-expression of the input data, given the input data is on the log-scale.

Usage

plot_boxplot2(
  x,
  metadata = NULL,
  fill_by = NULL,
  rle = FALSE,
  hcl_palette = "Zissou",
  plot_title = NULL,
  x_label = NULL,
  y_label = NULL,
  show_outliers = TRUE,
  legend_position = "top",
  ...
)

Arguments

x

feature x sample matrix or matrix-like object.

metadata

data.frame containing metadata per sample. rownames of metadata must match the colnames of the input matrix. Default NULL, each sample in the matrix will be plotted.

fill_by

metadata column used to color boxplots by the grouping variable. Default NULL, each sample in the matrix will be plotted

rle

should the relative-log-expression value be plotted. Requires input matrix to be on the log-scale. Default = FALSE

hcl_palette

color palette applied to 'fill_by' variable. One of the hcl.pals(). Default "Zissou"

plot_title

title of the plot. Default NULL

x_label

title of th x-axis. Default NULL

y_label

title of the y-axis. Default NULL

show_outliers

should boxplot outliers be shown. Default TRUE

legend_position

location keyword for the legend. One of "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center". Default "topright"

...

additional arguments passed to bxp()

Value

boxplots of the column data

Examples


# Create metadata for plotting
metadata <- data.frame(row.names = colnames(GSE161650_lc))
metadata$Group <- rep(c("DMSO", "THZ1"), each = 3)

# Plot the boxplot by sample
plot_boxplot2(GSE161650_lc)


# Plot the boxplot by coloring each Group and transforming values
#  to relative-log-expression
plot_boxplot2(
  GSE161650_lc,
  metadata,
  fill_by = "Group",
  rle = TRUE,
  plot_title = "Relative log-expression",
  y_label = "RLE",
  show_outliers = FALSE
  )